1.
![\frac{dy}{dx}](https://www.gstatic.com/education/formulas2/553212783/en/chain_rule_chain_rule_var_1.svg) |
= |
derivative of y with respect to x |
![\frac{dy}{du}](https://www.gstatic.com/education/formulas2/553212783/en/chain_rule_chain_rule_var_2.svg) |
= |
derivative of y with respect to u |
![\frac{du}{dx}](https://www.gstatic.com/education/formulas2/553212783/en/chain_rule_chain_rule_var_3.svg) |
= |
derivative of u with respect to x |
2. The chain rule states that the derivative of f(g(x)) is f'(g(x))⋅g'(x). In other words, it helps us differentiate *composite functions*.
3. Chain Rule: If h(x) = f(g(x)), then h (x) = f (g(x)) · g (x).